27 research outputs found

    Spatially-Aware Autoencoders for Detecting Contextual Anomalies in Geo-Distributed Data

    Get PDF
    The huge amount of data generated by sensor networks enables many potential analyses. However, one important limiting factor for the analyses of sensor data is the possible presence of anomalies, which may affect the validity of any conclusion we could draw. This aspect motivates the adoption of a preliminary anomaly detection method. Existing methods usually do not consider the spatial nature of data generated by sensor networks. Properly modeling the spatial nature of the data, by explicitly considering spatial autocorrelation phenomena, has the potential to highlight the degree of agreement or disagreement of multiple sensor measurements located in different geographical positions. The intuition is that one could improve anomaly detection performance by considering the spatial context. In this paper, we propose a spatially-aware anomaly detection method based on a stacked auto-encoder architecture. Specifically, the proposed architecture includes a specific encoding stage that models the spatial autocorrelation in data observed at different locations. Finally, a distance-based approach leverages the embedding features returned by the auto-encoder to identify possible anomalies. Our experimental evaluation on real-world geo-distributed data collected from renewable energy plants shows the effectiveness of the proposed method, also when compared to state-of-the-art anomaly detection methods

    ECHAD: Embedding-Based Change Detection from Multivariate Time Series in Smart Grids

    Get PDF
    Smart grids are power grids where clients may actively participate in energy production, storage and distribution. Smart grid management raises several challenges, including the possible changes and evolutions in terms of energy consumption and production, that must be taken into account in order to properly regulate the energy distribution. In this context, machine learning methods can be fruitfully adopted to support the analysis and to predict the behavior of smart grids, by exploiting the large amount of streaming data generated by sensor networks. In this article, we propose a novel change detection method, called ECHAD (Embedding-based CHAnge Detection), that leverages embedding techniques, one-class learning, and a dynamic detection approach that incrementally updates the learned model to reflect the new data distribution. Our experiments show that ECHAD achieves optimal performances on synthetic data representing challenging scenarios. Moreover, a qualitative analysis of the results obtained on real data of a real power grid reveals the quality of the change detection of ECHAD. Specifically, a comparison with state-of-the-art approaches shows the ability of ECHAD in identifying additional relevant changes, not detected by competitors, avoiding false positive detections

    Deep learning for feature extraction in remote sensing: A case-study of aerial scene classification

    Get PDF
    Scene classification relying on images is essential in many systems and applications related to remote sensing. The scientific interest in scene classification from remotely collected images is increasing, and many datasets and algorithms are being developed. The introduction of convolutional neural networks (CNN) and other deep learning techniques contributed to vast improvements in the accuracy of image scene classification in such systems. To classify the scene from areal images, we used a two-stream deep architecture. We performed the first part of the classification, the feature extraction, using pre-trained CNN that extracts deep features of aerial images from different network layers: the average pooling layer or some of the previous convolutional layers. Next, we applied feature concatenation on extracted features from various neural networks, after dimensionality reduction was performed on enormous feature vectors. We experimented extensively with different CNN architectures, to get optimal results. Finally, we used the Support Vector Machine (SVM) for the classification of the concatenated features. The competitiveness of the examined technique was evaluated on two real-world datasets: UC Merced and WHU-RS. The obtained classification accuracies demonstrate that the considered method has competitive results compared to other cutting-edge techniques

    Aerial scene classification through fine-tuning with adaptive learning rates and label smoothing

    Get PDF
    Remote Sensing (RS) image classification has recently attracted great attention for its application in different tasks, including environmental monitoring, battlefield surveillance, and geospatial object detection. The best practices for these tasks often involve transfer learning from pre-trained Convolutional Neural Networks (CNNs). A common approach in the literature is employing CNNs for feature extraction, and subsequently train classifiers exploiting such features. In this paper, we propose the adoption of transfer learning by fine-tuning pre-trained CNNs for end-to-end aerial image classification. Our approach performs feature extraction from the fine-tuned neural networks and remote sensing image classification with a Support Vector Machine (SVM) model with linear and Radial Basis Function (RBF) kernels. To tune the learning rate hyperparameter, we employ a linear decay learning rate scheduler as well as cyclical learning rates. Moreover, in order to mitigate the overfitting problem of pre-trained models, we apply label smoothing regularization. For the fine-tuning and feature extraction process, we adopt the Inception-v3 and Xception inception-based CNNs, as well the residual-based networks ResNet50 and DenseNet121. We present extensive experiments on two real-world remote sensing image datasets: AID and NWPU-RESISC45. The results show that the proposed method exhibits classification accuracy of up to 98%, outperforming other state-of-the-art methods

    Multi-horizon air pollution forecasting with deep neural networks

    Get PDF
    Air pollution is a global problem, especially in urban areas where the population density is very high due to the diverse pollutant sources such as vehicles, industrial plants, buildings, and waste. North Macedonia, as a developing country, has a serious problem with air pollution. The problem is highly present in its capital city, Skopje, where air pollution places it consistently within the top 10 cities in the world during the winter months. In this work, we propose using Recurrent Neural Network (RNN) models with long short-term memory units to predict the level of PM10 particles at 6, 12, and 24 h in the future. We employ historical air quality measurement data from sensors placed at multiple locations in Skopje and meteorological conditions such as temperature and humidity. We compare different deep learning models’ performance to an Auto-regressive Integrated Moving Average (ARIMA) model. The obtained results show that the proposed models consistently outperform the baseline model and can be successfully employed for air pollution prediction. Ultimately, we demonstrate that these models can help decision-makers and local authorities better manage the air pollution consequences by taking proactive measures

    Air pollution prediction with multi-modal data and deep neural networks

    Get PDF
    Air pollution is becoming a rising and serious environmental problem, especially in urban areas affected by an increasing migration rate. The large availability of sensor data enables the adoption of analytical tools to provide decision support capabilities. Employing sensors facilitates air pollution monitoring, but the lack of predictive capability limits such systems’ potential in practical scenarios. On the other hand, forecasting methods offer the opportunity to predict the future pollution in specific areas, potentially suggesting useful preventive measures. To date, many works tackled the problem of air pollution forecasting, most of which are based on sequence models. These models are trained with raw pollution data and are subsequently utilized to make predictions. This paper proposes a novel approach evaluating four different architectures that utilize camera images to estimate the air pollution in those areas. These images are further enhanced with weather data to boost the classification accuracy. The proposed approach exploits generative adversarial networks combined with data augmentation techniques to mitigate the class imbalance problem. The experiments show that the proposed method achieves robust accuracy of up to 0.88, which is comparable to sequence models and conventional models that utilize air pollution data. This is a remarkable result considering that the historic air pollution data is directly related to the output—future air pollution data, whereas the proposed architecture uses camera images to recognize the air pollution—which is an inherently much more difficult problem

    Literature on applied machine learning in metagenomic classification: A scoping review

    Get PDF
    Applied machine learning in bioinformatics is growing as computer science slowly invades all research spheres. With the arrival of modern next-generation DNA sequencing algorithms, metagenomics is becoming an increasingly interesting research field as it finds countless practical applications exploiting the vast amounts of generated data. This study aims to scope the scientific literature in the field of metagenomic classification in the time interval 2008–2019 and provide an evolutionary timeline of data processing and machine learning in this field. This study follows the scoping review methodology and PRISMA guidelines to identify and process the available literature. Natural Language Processing (NLP) is deployed to ensure efficient and exhaustive search of the literary corpus of three large digital libraries: IEEE, PubMed, and Springer. The search is based on keywords and properties looked up using the digital libraries’ search engines. The scoping review results reveal an increasing number of research papers related to metagenomic classification over the past decade. The research is mainly focused on metagenomic classifiers, identifying scope specific metrics for model evaluation, data set sanitization, and dimensionality reduction. Out of all of these subproblems, data preprocessing is the least researched with considerable potential for improvement

    Anomaly Detection and Repair for Accurate Predictions in Geo-distributed Big Data

    No full text
    The increasing presence of geo-distributed sensor networks implies the generation of huge volumes of data from multiple geographical locations at an increasing rate. This raises important issues which become more challenging when the final goal is that of the analysis of the data for forecasting purposes or, more generally, for predictive tasks. This paper proposes a framework which supports predictive modeling tasks from streaming data coming from multiple geo-referenced sensors. In particular, we propose a distance-based anomaly detection strategy which considers objects described by embedding features learned via a stacked auto-encoder. We then devise a repair strategy which repairs the data detected as anomalous exploiting non-anomalous data measured by sensors in nearby spatial locations. Subsequently, we adopt Gradient Boosted Trees (GBTs)to predict/forecast values assumed by a target variable of interest for the repaired newly arriving (unlabeled)data, using the original feature representation or the embedding feature representation learned via the stacked auto-encoder. The workflow is implemented with distributed Apache Spark programming primitives and tested on a cluster environment. We perform experiments to assess the performance of each module, separately and in a combined manner, considering the predictive modeling of one-day-ahead energy production, for multiple renewable energy sites. Accuracy results show that the proposed framework allows reducing the error up to 13.56%. Moreover, scalability results demonstrate the efficiency of the proposed framework in terms of speedup, scaleup and execution time under a stress test

    Big Data Analytics and Predictive Modeling Approaches for the Energy Sector

    No full text

    An OWL Ontology for Supporting Semantic Services in Big Data Platforms

    No full text
    In the last years, there was a growing interest in the use of Big Data models to support advanced data analysis functionalities. Many companies and organizations lack IT expertise and adequate budget to have benefits from them. In order to fill this gap, a model-based approach for Big Data Analytics-as-a-service (MBDAaaS) can be used. The proposed model, composed by declarative, procedural and deployment (sub) models, can be used to select a deployable set of services based on a set of user preferences shaping a Big Data Campaign (BDC). The deployment of a BDC requires that the selection of services has to be carried out on the basis of coherent and non conflictual user preferences. In this paper we propose an OWL ontology in order to solve this issue.In the last years, there was a growing interest in the use of Big Data models to support advanced data analysis functionalities. Many companies and organizations lack IT expertise and adequate budget to have benefits from them. In order to fill this gap, a model-based approach for Big Data Analytics-as-a-service (MBDAaaS) can be used. The proposed model, composed by declarative, procedural and deployment (sub) models, can be used to select a deployable set of services based on a set of user preferences shaping a Big Data Campaign (BDC). The deployment of a BDC requires that the selection of services has to be carried out on the basis of coherent and non conflictual user preferences. In this paper we propose an OWL ontology in order to solve this issue
    corecore